import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression # #预测房价 # # 距离地铁(米) 附近学校(个) 小区绿化率(0.6) # # 根据已知的数据,预测新房子的房价 x = np.array([[500., 3., 0.1], [1000., 1.0, 0.6], [750., 2.0, 0.3], [600.0, 5.0, 0.2], [1200.0, 1.0, 0.6]]) y = np.array([20000., 18000., 19000., 19500., 16500.]) lr = LinearRegression() lr.fit(x, y) x_new = np.array([[800., 4, 0.1]]) # 新房子的特征 print(lr.predict(x_new)) ## 结果为 17764.63963964 print("===================分割线===================") data = pd.read_csv(r"D:\shaoxiao\文档\机器学习\boston.csv") x = data.iloc[:, 1:14].values y = data.iloc[:, -1].values lr = LinearRegression() lr.fit(x, y) x_new = np.array([[0.00632,18.0,2.31,0.0,0.538,6.575,65.2,4.09,1.0,296.0,15.3,396.9,4.98]]) print(lr.predict(x_new)) ## 结果为 30.00384338
01.房价预测-线性回归模型训练
本节797字2025-05-22 11:39:42