""" Auther:少校 Time:2025/5/23 10:29 越努力,越幸运 """ import numpy as np def grad_func(x): """ 计算当前点的梯度(导数) :param x: 当前点的坐标 :return: 返回梯度值 """ return 2 * x #初始搜索点,可以随便给,或用随机数 search_point = -8 #搜索步长(超参数) alpha = 0.1 #终止条件(超参数) end_value = 0.00001 while True: k = grad_func(search_point) next_point = search_point - alpha * k if np.abs(next_point ** 2 - search_point ** 2) > end_value: # 将当前点变为下一个搜索点,向前推进 search_point = next_point else: break print(f"搜索到的最小值是:{search_point}")
03.梯度下降
本节564字2025-05-23 14:44:22